构建用户画像的核心工作,主要是利用存储在服务器上的海量日志和数据库里的大量数据进行分析和挖掘,给用户贴“标签”,而“标签”是能表示用户某一维度特征的标识。
用户画像包含的内容并不完全固定,根据行业和产品的不同所关注的特征也有不同。对于大部分互联网公司,用户画像都会包含人口属性和行为特征。人口属性主要指用户的年龄、性别、所在的省份和城市、教育程度、婚姻情况、生育情况、工作所在的行业和职业等。行为特征主要包含活跃度、忠诚度等指标。
用户特征的提取即用户画像的生产过程,大致可以分为以下几步:
1. 用户建模,指确定提取的用户特征维度,和需要使用到的数据源。
2. 数据收集,通过数据收集工具,如Flume或自己写的脚本程序,把需要使用的数据统一存放到Hadoop集群。
3. 数据清理,数据清理的过程通常位于Hadoop集群,也有可能与数据收集同时进行,这一步的主要工作,是把收集到各种来源、杂乱无章的数据进行字段提取,得到关注的目标特征。
4. 模型训练,有些特征可能无法直接从数据清理得到,比如用户感兴趣的内容或用户的消费水平,那么可以通过收集到的已知特征进行学习和预测。
5. 属性预测,利用训练得到的模型和用户的已知特征,预测用户的未知特征。
6. 数据合并,把用户通过各种数据源提取的特征进行合并,并给出一定的可信度。
7. 数据分发,对于合并后的结果数据,分发到精准营销、个性化推荐、CRM等各个平台,提供数据支持。
让数据流动起来,开启业绩增长!
了解500+品牌零售商使用LinkFlow的场景用例