如何制定用户画像系统中的标签维度
781人已读
发布于:2023-01-11 15:39:48
互联网相关企业在建立用户画像时还会建立相应的标签体系,从建立的标签维度来看,可以将其分为用户属性类、用户行为类、用户消费类和风险控制类、社交属性类等五个常用维度。

如何制定用户画像系统中的标签维度

一、用户属性维度

1. 常见用户属性

用户属性是刻画用户的基础。常见用户属性指标包括:用户的年龄、性别、安装时间、注册状态、城市、省份、活跃登录地、历史购买状态、历史购买金额等。

2. 用户性别

用户性别可细分为自然性别和购物性别两种。

自然性别是指用户的实际性别,一般可通过用户注册信息、填写调查问卷表单等途径获得。该标签只需要从相应的表中抽取数据即可,加工起来较为方便。

用户购物性别是指用户购买物品时的性别取向。例如,一位实际性别为男性的用户,可能经常给妻子购买女性的衣物、包等商品,那么这位用户的购物性别则是女性。

二、用户行为维度

用户行为是另一种刻画用户的常见维度,通过用户行为可以挖掘其偏好和特征。常见用户行为维度指标包括:用户订单相关行为、下单/访问行为、用户近30天行为类型指标、用户高频活跃时间段、用户购买品类、点击偏好、营销敏感度等相关行为。

三、用户消费维度

对于用户消费维度指标体系的建设,可从用户浏览、加购、下单、收藏、搜索商品对应的品类入手,品类越细越精确,给用户推荐或营销商品的准确性越高。

因此将商品品类抽象成标签后,可通过品类+行为的组合应用方式找到目标潜在用户人群。

四、风险控制维度

互联网企业的用户可能会遇到薅羊毛、恶意刷单、借贷欺诈等行为的用户,为了防止这类用户给平台带来损失和风险,互联网公司需要在风险控制维度构建起相关的指标体系,有效监控平台的不良用户。

结合公司业务方向,例如可从账号风险、设备风险、借贷风险等维度入手构建风控维度标签体系。

五、社交属性维度

社交属性用于了解用户的家庭成员、社交关系、社交偏好、社交活跃程度等方面,通过这些信息可以更好地为用户提供个性化服务。

在日常使用社交软件时,我们可以发现社交软件中的信息流广告会结合我们的社交特征进行个性化推送。

让数据流动起来,开启业绩增长!

了解500+品牌零售商使用LinkFlow的场景用例