一、数据分析的步骤
1、目标的确定
只有弄清分析的目的是什么?才能准确定位分析因子,提出有价值的问题,提供清晰的思路。
这一步在工作中通常是由你的客户/上级/其他部门同事/合作方提出来的,但第一次的数据报告中,需要你自己来提出并确定目标。
选择目标时,请注意以下几点:选择一个你比较熟悉,或者比较感兴趣的领域/行业;选择一个范围比较小的细分领域/细分行业作为切入点;确定这个领域/行业有公开发表的数据/可以获取的UGC内容(论坛帖子,用户点评等)。
2、数据获取
目标定下来了,接下来要去找相应的数据。如果你制定目标时完全遵循了第一步的三个注意点,那么你现在会很明确要找哪些数据。
获取目标数据的三类方法:一是从一些有公开数据的网站上复制/下载,比如统计局网站,各类行业网站等,通过搜索引擎可以很容易找到这些网站。二是通过一些专门做数据整理打包的网站/api来下载,如果你要找金融类的数据,这种方法比较实用。其他类型的数据也有人做,但通常要收费。三是自行收集所需数据,比如用爬虫工具爬取点评网站的商家评分、评价内容等,或是直接自己人肉收集(手工复制下来),亦或是找一个免费问卷网站做一份问卷然后散发给你身边的人,都是可以的。
3、数据清洗
在工作中,90%以上的情况,你拿到的数据都需要先做清洗工作,排除异常值、空白值、无效值、重复值等等。这项工作经常会占到整个数据分析过程将近一半的时间。如果在上一步中,你的数据是通过手工复制/下载获取的,那么通常会比较干净,不需要做太多清洗工作。但如果数据是通过爬虫等方式得来,那么你需要进行清洗,提取核心内容,去掉网页代码、标点符号等无用内容。无论你采用哪一种方式获取数据,请记住,数据清洗永远是你必须要做的一项工作。
4、数据整理
清洗过后,需要进行数据整理,即将数据整理为能够进行下一步分析的格式,对于初学者,用Excel来完成这一工作就OK。
如果你的数据已经是表格形式,那么计算一些二级指标就好,比如用今年销量和去年销量算出同比增长率。鉴于你是第一次做数据报告,建议你不要计算太多复杂的二级指标,基本的同比、环比、占比分布这些就OK。如果你收集的是一些非数字的数据,比如对商家的点评,那么你进行下一步统计之前,需要通过“关键词-标签”方式,将句子转化为标签,再对标签进行统计。
5、描述分析
数据描述:对数据的基本情况进行描述,如数据的总数、时间跨度、数据来源等。
指标统计:分析实际情况的数据指标,主要包括四个部分:
(1)变化:数据随着时间的变动而增减,如近期销售额表现。
(2)分布:数据在不同层次上的表现,如地域分布、人群分布。
(3)对比:数据项之间的对比,如产品线对比、用户数对比。
(4)预测:根据数据现有的增减幅度,预测未来的状况。
6、数据可视化
将数据可视化也是一个学问。通过数据分析得出结论后,还需要用图表展示出来,俗话说得好,“文不如表,表不如图",用图表可以更清晰展现你的结论,通常的可视化我们可以利用excel 自带的可视化的功能,也可以通过python或者R脚本进行可视化
如何用合适的图表表现?每一种图表的寓意是什么?下面列举下常用的8个图表:
①折线图:合适用于随时间而变化的连续数据,例如随时间收入变化,及增长率变化。
②柱型图:主要用来表示各组数据之间的差别。主要有二维柱形图、三维柱形图、圆柱图、圆锥图和棱锥图。
③堆积柱形图:堆积柱形图不仅可以显示同类别中每种数据的大小,还可以显示总量的大小。
④线-柱图:这种类型的图不仅可以显示出同类别的比较,还可以显示出趋势情况。
⑤条形图:类似于横向的柱状图,和柱状图的展示效果相同,主要用于各项类的比较。
⑥饼图:主要显示各项占比情况。饼图一般慎用,除非占比区别非常明显。因为肉眼对对饼图的占比比例分辨并不直观。而且饼图的项,一般不要超过6项。6项后建议用柱形图更为直观。
⑦复合饼图:一般是对某项比例的下一步分析。
⑧母子饼图:可直观地分析项目的组成结构与比重
图表不必太花哨,一个表说一个问题就好。用友好的可视化图表,节省阅读者的时间,也是对阅读者的尊重。
7、洞察结论
这一步是数据报告的核心,也是最能看出数据分析师水平的部分。一个年轻的分析师和一个年迈的分析师拿到同样的图表,完全有可能解读出不同的内容。
8、报告撰写
报告撰写是整个数据分析的最后一步,是对整个数据分析过程的总结。一份优秀的报告需要一个名确的主题、清晰的目录、图文并茂描述数据、结论与建议。应至少包含以下六块内容:报告背景、报告目的、数据来源、数量等基本情况、分页图表内容及本页结论、各部分小结及最终总结、下一步策略或对趋势的预测。
其中,背景和目的决定了你的报告逻辑(解决什么问题);数据基本情况告诉对方你用了什么样的数据,可信度如何;分页内容需要按照一定的逻辑来构建,目标仍然是解决报告目的中的问题;小结及总结必不可少;下一步策略或对趋势的预测能为你的报告加分。
二、数据分析报告的撰写
数据分析一般都是一次性的,一般都是专题分析报告。提需求的方式,是我们有一个问题需要解决(解释性,探索性,描述性,预测性)。而不是提的需求是,我需要一个什么样格式的数据,你们计算好了发给我一下,甚至直接给我做一个ppt和报表。客户说自己想买一瓶可乐,其实他只是口渴,我们只需要给他点喝的就行。
1、分析报告类型
数据分析报告是数据分析过程和思路的最后呈现,得出分析的结论并给出解决方案。其本质上是在写一篇有理有据,逻辑性强的议论文。针对不同的分析目的选择不同的报告形式和内容。
专题分析报告
综合分析报告
日常数据通报
2、报告结构:
一份数据分析报告由以下几个部分组成,一般都是总分总的格式:
1)标题
标题是一份报告的文眼,是全篇报告最浓缩的精华。好的标题让读者能毫无偏差地理解这篇分析报告的主要目的,有时可以直接在标题中加入部分或者关键性结论达到直达文意的效果。
在标题的命名过程中,现在有一份关于数据分析师招聘和薪酬方面的一份报告,你可以:
1. 直接在标题中放上报告的结论,例如《数据分析师在人工智能大环境下需求直线上升》
2. 提出分析报告的研究问题,例如《数据分析师的职业规划在哪里》
3. 中规中矩地写上研究的主题,例如《数据分析师的招聘研究》
2)目录
提现数据分析报告的整体架构
3)前言
前言部分就和写论文时候的Abstract类似:
1. 要写出做这次分析报告的目的和背景
2. 略微阐述现状或者存在的问题
3. 通过这次分析需要解决什么问题
4. 运用了什么分析思路,分析方法和模型
5. 给出总结性的结论或者效果
6. 给出数据来源
4)正文
逻辑性强
现实状况的给出和论证一定要严谨合理,逻辑性强。这正是数据分析师存在的意义。
架构清晰
分析报告的架构体现了分析师的分析思路的框架,一定要显而易见,符合常识。思路最好不要出现跳跃的地方,以免出现阅读障碍,令读者不知所云。一步一步得出结论,给出观点。
结论明确
数据的结论一定是要从数据中得出来,要严谨的切合数据分析的主题,最好一个分析模块只给出一个最直接最和主题关联的分析结论。一个特征当然可以从多个角度提取出多个观点和结论,但是一定要选择和主题相关性最强的那个,不然大量的低相关信息会很容易打乱读者的思路。
可视化
人都是视觉动物,一图胜千言。在数据报告中需要大量地使用各种图表而非文字,图表能够一步到位的将数据呈现在读者面前,大部分时候无需做多余的解释。
术语
根据读者的不同决定是否要解释报告中的分析方法和术语。
5)分析结论
根据分析目的给出相应建议。
让数据流动起来,开启业绩增长!
了解500+品牌零售商使用LinkFlow的场景用例