数据挖掘究竟是什么?
842人已读
发布于:2023-02-04 15:56:36
展开目录
展开目录收起
一、数据挖掘的本质
二、数据挖掘的历史背景
三、数据挖掘的流程步骤
数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术 数据挖掘是人工智能和数据库领域研究的热点问题,所谓数据挖掘是指从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的非平凡过程,其具体包含:一、数据挖掘的本质;二、数据挖掘的历史背景;三、数据挖掘的流程步骤。

数据挖掘究竟是什么?

一、数据挖掘的本质

数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,作出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,作出正确的决策。知识发现过程由以下三个阶段组成:①数据准备;②数据挖掘;③结果表达和解释。数据挖掘可以与用户或知识库交互。

二、数据挖掘的历史背景

20世纪90年代,随着数据库系统的广泛应用和网络技术的高速发展,数据库技术也进入一个全新的阶段,即从过去仅管理一些简单数据发展到管理由各种计算机所产生的图形、图像、音频、视频、电子档案、Web页面等多种类型的复杂数据,并且数据量也越来越大。数据库在给我们提供丰富信息的同时,也体现出明显的海量信息特征。

信息爆炸时代,海量信息给人们带来许多负面影响,最主要的就是有效信息难以提炼,过多无用的信息必然会产生信息距离(信息状态转移距离,是对一个事物信息状态转移所遇到障碍的测度,简称DIST或DIT)和有用知识的丢失。

这也就是约翰·内斯伯特( John Nalsbert)称为的“信息丰富而知识贫乏”窘境。因此,人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息,以更好地利用这些数据。但仅以数据库系统的录入、查询、统计等功能,无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势,更缺乏挖掘数据背后隐藏知识的手段。正是在这样的条件下,数据挖掘技术应运而生。

三、数据挖掘的流程步骤

数据挖掘主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。

让数据流动起来,开启业绩增长!

了解500+品牌零售商使用LinkFlow的场景用例