如何入门数据分析
955人已读
发布于:2023-01-17 14:23:19
展开目录
展开目录收起
一、入门数据分析
第一阶段:Excel数据分析
第二阶段:SQL数据库语言
第三阶段:数据可视化&商业智能
第四阶段:数理统计学
第五阶段:数据分析与软件应用
第六阶段:数据挖掘与软件应用
二、数据分析的步骤
1、明确分析的目的,提出问题。
2、数据采集。
3、数据处理。
4、数据探索。
5、分析数据。
6、得到可视化结果。
三、数据分析常用方法
1、PEST分析:
2、SWOT分析:
3、5W2H分析:
4、7C罗盘模型:
5、海盗指标法AARRR:
第一阶段:Excel数据分析、第二阶段:SQL数据库语言、第三阶段:数据可视化&商业智能、第四阶段:数理统计学、第五阶段:数据分析与软件应用、第六阶段:数据挖掘与软件应用

如何入门数据分析

一、入门数据分析

第一阶段:Excel数据分析

每一位数据分析师都脱离不开Excel。它是日常工作中最常用的工具,如果不考虑性能和数据量,它可以应付绝大部分分析工作。虽然现在机器学习满地走,Excel依旧是无可争议的第一工具。对于没有经验的你,Excel是一款必须熟练的工具。它是日常工作中最常用的工具,如果不考虑性能和数据量,它可以应付绝大部分分析工作。

第二阶段:SQL数据库语言

作为数据分析人员,我们首先要知道如何去获取数据,其中最常见的就是从关系型数据库中取数,因此你可以不会R,不会python,但是你不能不会SQL。

DT时代,数据正在呈指数级增长。Excel对十万条以内的数据处理起来没有问题,但是往小处说,但凡产品有一点规模,数据都是百万起。这时候就需要学习数据库。

会在招聘条件中,越来越多的产品和运营岗位,将会SQL作为优先的加分项。SQL是数据分析的核心技能之一,从Excel到SQL是数据处理效率的一大进步。主要了解数据库查询语言,where,group by,orderby,having,like,count,sum,min,max,distinct,if,join,left join,limit,and和or的逻辑,时间转换函数等。学习SQL最快的方法是能自己下载数据库管理工具,找些数据练习。

第三阶段:数据可视化&商业智能

数据可视化能力已经越来越成为各岗位的基础技能。领英的数据报告显示,数据可视化技能在历年年中国最热门技能中排名第一。可视化工作几乎是你正式进行数据分析的第一步,通过SQL拿到数据之后,我们需要使用可视化方法探索和发现数据中的模式规律。

数据分析界有一句经典名言,字不如表,表不如图。实际上除掉数据挖掘这类高级分析,不少数据分析就是监控数据和观察数据。除此此外,数据分析的大多时候都是要兜售自己的观点和结论的,而兜售的最好方式就是做出观点清晰数据详实的PPT和报表给老板看。

第四阶段:数理统计学

统计学是数据分析最重要的基础之一,是数据分析的基石和方法论。统计知识会要求我们以另一个角度看待数据。当你知道AB两组的差异用平均值看是多傻的事情,你的分析技巧也会显著提高。这里我们需要从基础的统计理论(描述性统计、区间估计、假设检验等)出发,到基本的统计分析(T 检验、方差分析等),最后到商业常用的模型(回归分析、方差分析等),学习数据分析背后的逻辑,掌握实用统计学的概念和会利用统计的思维去思考问题。

第五阶段:数据分析与软件应用

SPSS是统计分析入门软件,如果你想快速入门而又不想学习编程,我推荐使用SPSS。SPSS软件是世界三大统计分析软件之一,以其易于操作、易于入门,结果易于阅读的优点,一直备受数据分析人员的青睐,一般经过短期学习即可用SPSS 做简单的数据分析,包括绘制图表、简单回归、相关分析等等。学习SPSS的重点并不在于软件本身,而是相关的统计学知识,这也是在前面建议大家铺垫的,也就是你要学会怎样去分析“输入数据后,软件给你呈现的结果。

第六阶段:数据挖掘与软件应用

数据挖掘,英文是Data Mining 也叫作数据勘探,类似于采矿,但是数据是贫矿。我们需要结合行业课题,利用数据挖掘工具,建置数据挖掘模型,发掘规律和商业价值。另外数据挖掘是交叉学科,涉及统计学、计算机、机器学习、运筹学等多门学科,是一个运用广泛和富有前景的学科领域。

二、数据分析的步骤

1、明确分析的目的,提出问题。

只有弄清楚了分析的目的是什么,才能准确定位分析因子,提出有价值的问题,提供清晰的指引方向。

2、数据采集。

收集原始数据,数据来源可能是丰富多样的,一般有数据库、互联网、市场调查等。具体办法可以通过加入“埋点”代码,或者使用第三方的数据统计工具。

3、数据处理。

对收集到的原始数据进行数据加工,主要包括数据清洗、数据分组、数据检索、数据抽取等处理方法。

4、数据探索。

通过探索式分析检验假设值的形成方式,在数据之中发现新的特征,对整个数据集有个全面认识,以便后续选择何种分析策略。

5、分析数据。

数据整理完毕,就要对数据进行综合分析和相关分析,需要对产品、业务、技术等了如指掌才行,常常用到分类、聚合等数据挖掘算法。Excel是最简单的数据分析工具,专业数据分析工具有FineBI、Python等。

6、得到可视化结果。

借助可视化数据,能有效直观地表述想要呈现的信息、观点和建议,比如金字塔图、矩阵图、漏斗图、帕累托图等,同时也可以使用报告等形式与他人交流。

三、数据分析常用方法

1、PEST分析:

是利用环境扫描分析总体环境中的政治、经济、社会与科技等四种因素的一种模型。这也是在作市场研究时,外部分析的一部分,能给予公司一个针对总体环境中不同因素的概述。这个策略工具也能有效的了解市场的成长或衰退、企业所处的情况、潜力与营运方向。一般用于宏观分析。

2、SWOT分析:

又称优劣分析法或道斯矩阵,是一种企业竞争态势分析方法,是市场营销的基础分析方法之一,通过评价自身的优势、劣势、外部竞争上的机会和威胁,用以在制定发展战略前对自身进行深入全面的分析以及竞争优势的定位。

3、5W2H分析:

用五个以W开头的英语单词和两个以H开头的英语单词进行设问,发现解决问题的线索,寻找发明思路,进行设计构思,从而搞出新的发明项目具体:

WHAT:是什么?目的是什么?做什么工作?

WHY:为什么要做?可不可以不做?有没有替代方案?

WHO:谁?由谁来做?

WHEN:何时?什么时间做?什么时机最适宜?

WHERE:何处?在哪里做?

HOW :怎么做?如何提高效率?如何实施?方法是什么?

HOW MUCH:多少?做到什么程度?数量如何?

4、7C罗盘模型:

7C模型包括

C1——竞争对手;C2——商品;C3——成本;C4——流通渠道;C5——交流

C6——消费者

N = 需求:生活必需品,像水、衣服、鞋。

W = 想法:想得到的东西,像运动饮料、旅游鞋。

S = 安全:安全性,像核电、车、食品等物品的安全。

E = 教育:对消费者进行教育

C7——环境

N = 国内和国际

W = 天气

S = 社会和文化

E = 经济

5、海盗指标法AARRR:

是互联网常用的“用户增长模型”,黑客增长模型:

Acquisition:获取用户

Activation:提高活跃度

Retention:提高留存率

Revenue:获取收入

Refer:自传播

让数据流动起来,开启业绩增长!

了解500+品牌零售商使用LinkFlow的场景用例